Study of large axial space rebinning algorithm in γ-photon industrial tomography image reconstruction

Author:

Wang M.,Zhao M.,Yao M.,Liu J.,Guo R.

Abstract

Abstract The accuracy of the existing single slice and Fourier rebinning algorithms depends on the projection angle of the line of response. The increase of such projection angle with the detector size, typical in the large axial space of γ-photon industrial detection, and the loss of some projection data after rebinning, result in the degradation of the image quality. In addition, those algorithms consider the probability of positron annihilation equally distributed along the line of response, which prevents to estimate accurately the positions of the annihilation point, and can originate artifacts and noise in the reconstructed image. In this work, we propose an alternative large axial space rebinning algorithm. In that algorithm, initially the line of response is divided into transverse and axial components. Then, each line of response is uniformly rebinned into all the 2D sinogram data intersecting with it. To improve the accuracy of the estimate of the annihilation point location and suppress the noise effectively, we assign a Gaussian weight coefficient to the projection data, and optimise the rebinning algorithm with it. Finally, we reconstruct the image on the basis of the 2D sinograms with the optimised weights. On the computational side, the algorithm is also accelerated by making use of parallel computing. Both simulation and experimental results show that the proposed method improves the contrast and spatial resolution of 2D reconstructed images. Furthermore, the reconstruction time is not affected by the new method, which is therefore expected to meet the demand of γ-photon industrial inspection imaging.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3