Fluorescence of pyrene-doped polystyrene films from room temperature down to 4 K for wavelength-shifting applications

Author:

Benmansour H.,Ellingwood E.,Hars Q.,Di Stefano P.C.F.,Gallacher D.,Kuźniak M.,Pereimak V.,Anstey J.,Boulay M.G.,Cai B.,Garg S.,Kemp A.,Mason J.,Skensved P.,Strickland V.,Stringer M.

Abstract

Abstract In liquid argon-based particle detectors, slow wavelength shifters (WLSs) could be used alongside the common, nanosecond scale, WLS tetraphenyl butadiene (TPB) for background mitigation purposes. At room temperature, pyrene has a moderate fluorescence light yield (LY) and a time constant of the order of hundreds of nanoseconds. In this work, four pyrene-doped polystyrene films with various purities and concentrations were characterized in terms of LY and decay time constants in a range of temperature between 4 K and 300 K under ultraviolet excitation. These films were found to have a LY between 35 and 50% of that of evaporated TPB. All light yields increase when cooling down, while the decays slow down. At room temperature, we observed that pyrene purity is strongly correlated with emission lifetime: highest obtainable purity samples were dominated by decays with emission time constants of ∼ 250–280 ns, and lower purity samples were dominated by an ∼ 80 ns component. One sample was investigated further to better understand the monomer and excimer emissions of pyrene. The excimer-over-monomer intensity ratio decreases when the temperature goes down, with the monomer emission dominating below ∼ 87 K.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultraviolet-induced fluorescence of poly(methyl methacrylate) compared to 1,1,4,4-tetraphenyl-1,3-butadiene down to 4 K;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-09

2. Development and characterization of a slow wavelength shifting coating for background rejection in liquid argon detectors;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3