On the use of neural networks for energy reconstruction in high-granularity calorimeters

Author:

Akchurin N.,Cowden C.,Damgov J.,Hussain A.,Kunori S.

Abstract

Abstract We contrasted the performance of deep neural networks — Convolutional Neural Network (CNN) and Graph Neural Network (GNN) — to current state of the art energy regression methods in a finely 3D-segmented calorimeter simulated by GEANT4. This comparative benchmark gives us some insight to assess the particular latent signals neural network methods exploit to achieve superior resolution. A CNN trained solely on a pure sample of pions achieved substantial improvement in the energy resolution for both single pions and jets over the conventional approaches. It maintained good performance for electron and photon reconstruction. We also used the Graph Neural Network (GNN) with edge convolution to assess the importance of timing information in the shower development for improved energy reconstruction. We implement a simple simulation based correction to the energy sum derived from the fraction of energy deposited in the electromagnetic shower component. This serves as an approximate dual-readout analogue for our benchmark comparison. Although this study does not include the simulation of detector effects, such as electronic noise, the margin of improvement seems robust enough to suggest these benefits will endure in real-world application. We also find reason to infer that the CNN/GNN methods leverage latent features that concur with our current understanding of the physics of calorimeter measurement.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of a deep learning method for shower axis reconstruction in a 3D imaging calorimeter;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-09

2. Reconstruction of electromagnetic showers in calorimeters using Deep Learning;The European Physical Journal C;2024-06-25

3. The optimal use of segmentation for sampling calorimeters;Journal of Instrumentation;2024-06-01

4. Leveraging staggered tessellation for enhanced spatial resolution in high-granularity calorimeters;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-03

5. Sub-10 ps time tagging of electromagnetic showers with scintillating glasses and SiPMs;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3