Linear approximation to the statistical significance autocovariance matrix in the asymptotic regime

Author:

Ananiev V.,Read A.L.

Abstract

Abstract Approximating significance scans of searches for new particles in high-energy physics experiments as Gaussian fields is a well-established way to estimate the trials factors required to quantify global significances. We propose a novel, highly efficient method to estimate the covariance matrix of such a Gaussian field. The method is based on the linear approximation of statistical fluctuations of the signal amplitude. For one-dimensional searches the upper bound on the trials factor can then be calculated directly from the covariance matrix. For higher dimensions, the Gaussian process described by this covariance matrix may be sampled to calculate the trials factor directly. This method also serves as the theoretical basis for a recent study of the trials factor with an empirically constructed set of Asmiov-like background datasets. We illustrate the method with studies of a Hγγ inspired model that was used in the empirical paper.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3