Edge Thomson scattering diagnostic with compact polychromators on the HL-3 Tokamak

Author:

Gong S.B.,Zhang T.C.,Guo W.P.,Hou Z.P.,Zhai W.Y.,Liu C.H.,Deng B.H.,Shi Z.B.,Chen W.,Zhong W.L.,Xu M.,Duan X.R.

Abstract

Abstract The edge Thomson scattering (ETS) diagnostic with compact polychromators on the HL-3 Tokamak was developed recently. The energy and repetition frequency of the Nd: YAG laser are 2.0 J and 30 Hz, respectively. The laser beam propagates vertically through the plasma region and the scattered light is observed horizontally. The projected scattering region at the plasma midplane is from 0.6 < r/a < 1.0. The 5-channel compact polychromator (width 432 mm, depth 472 mm and height 88 mm) is developed to measure the Thomson scattering spectra. Modular design in the power supply and the amplifier circuits simplifies the assembly and maintenance of the polychromator. By using the new narrow band filters with cut-off depth larger than OD 4, the stray light resulted from Nd: YAG laser has been suppressed by the polychromator. The signal to noise ratio (SNR) range of each channel is from 10 to 200 depending on plasma parameters. The designed electron temperature measurement range is from 5 to 1000 eV and electron density measurement range is from 5 × 1018 to 1 × 1020 m-3. New measurement results of electron temperature by ETS are compared with that from the electron cyclotron emission (ECE) radiometer. The time evolution of ETS and ECE matches with each other in different plasma discharges. Combined with the data from the core Thomson scattering diagnostic system, the plasma electron temperature profile on the HL-3 tokamak is presented for the first time.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3