A Neural-Network-defined Gaussian Mixture Model for particle identification applied to the LHCb fixed-target programme

Author:

Graziani G.,Anderlini L.,Mariani S.,Franzoso E.,Pappalardo L.L.,di Nezza P.

Abstract

Abstract Particle identification in large high-energy physics experiments typically relies on classifiers obtained by combining many experimental observables. Predicting the probability density function (pdf) of such classifiers in the multivariate space covering the relevant experimental features is usually challenging. The detailed simulation of the detector response from first principles cannot provide the reliability needed for the most precise physics measurements. Data-driven modelling is usually preferred, though sometimes limited by the available data size and different coverage of the feature space by the control channels. In this paper, we discuss a novel approach to the modelling of particle identification classifiers using machine-learning techniques. The marginal pdf of the classifiers is described with a Gaussian Mixture Model, whose parameters are predicted by Multi Layer Perceptrons trained on calibration data. As a proof of principle, the method is applied to the data acquired by the LHCb experiment in its fixed-target configuration. The model is trained on a data sample of proton-neon collisions and applied to smaller data samples of proton-helium and proton-argon collisions collected at different centre-of-mass energies. The method is shown to perform better than a detailed simulation-based approach, to be fast and suitable to be applied to a large variety of use cases.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference20 articles.

1. SPlot: A Statistical tool to unfold data distributions;Pivk;Nucl. Instrum. Meth. A,2005

2. Parameter uncertainties in weighted unbinned maximum likelihood fits;Langenbruch,2019

3. sFit: a method for background subtraction in maximum likelihood fit;Xie,2009

4. Machine Learning on data with sPlot background subtraction;Borisyak;JINST,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3