Guidelines for optimal design of radio-frequency in-vacuum coaxial transmission line for mirror cleaning service in ITER diagnostics

Author:

Danisi A.,Vayakis G.,Walsh M.

Abstract

Abstract Several optical diagnostics in the ITER fusion reactor make use of big mirrors which are placed within the ITER vacuum vessel (VV), and therefore cannot have high accessibility. Plasma deposits developing on these mirrors may hinder the reflectivity of the mirror themselves, requiring a remote cleaning operation. The radio-frequency (RF) discharge mirror cleaning service operates a plasma discharge in the vicinity of the mirror, eroding the deposit layer and therefore cleaning the mirror remotely. In order to achieve this, RF power needs to be sent from outside the VV to the mirror, using a transmission line. Very stringent design requirements are applicable to the design of this RF line, such as vacuum compatibility, high power handling, low losses, overall matching, no cable over-heating, etc. This paper analytically addresses the design optimization of the RF mirror cleaning transmission line, taking into account ITER requirements, in order to give robust guidelines for the possible ad-hoc cable design adaptation that is to be undertaken case-by-case. The design guidelines are based on underlying transmission line theory, from which a set of design equations are drawn. The optimal design is achieved using design optimization considerations in the available design space. These guidelines are considered to be a useful design tool for optical diagnostics requiring mirror cleaning operation, and are aimed at harmonising the transmission line design procedures across the different cases.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3