Universal uncertainty estimation for nuclear detector signals with neural networks and ensemble learning

Author:

Ai P.,Deng Z.,Wang Y.,Shen C.

Abstract

Abstract Characterizing uncertainty is a common issue in nuclear measurement and has important implications for reliable physical discovery. Traditional methods are either insufficient to cope with the heterogeneous nature of uncertainty or inadequate to perform well with unknown mathematical models. In this paper, we propose using multi-layer convolutional neural networks for empirical uncertainty estimation and feature extraction of nuclear pulse signals. This method is based on deep learning, a recent development of machine learning techniques, which learns the desired mapping function from training data and generalizes to unseen test data. Furthermore, ensemble learning is utilized to estimate the uncertainty originating from trainable parameters of the network and to improve the robustness of the whole model. To evaluate the performance of the proposed method, simulation studies, in comparison with curve fitting, investigate extensive conditions and show its universal applicability. Finally, a case study is made using data from a NICA-MPD electromagnetic calorimeter module exposed to a test beam at DESY, Germany. The uncertainty estimation method successfully detected out-of-distribution samples and also achieved good accuracy in time and energy measurements.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3