Study on time measurement for CSA-based readout electronics in STCF ECAL

Author:

Luo L.,Jia Z.,Shen Z.,Zhang Y.,Liu S.

Abstract

Abstract Super Tau-Charm Facility (STCF) will provide unique support for particle physics research in China owing to its high luminosity and large dynamic range. Its electromagnetic calorimeter (ECAL) is designed as a new type of calorimeter which can perform high-precision energy and time measurement at the same time. Considering the high event rate and pile up induced by high luminosity, and the large channel number scale of ECAL, the readout electronics needs to adopt a high-precision, unconventional, and real-time processing method to reduce the data amount in transmission. Based on the charge-sensitive front-end electronics in energy measurement, an online time measurement method based on waveform fitting algorithm has been studied and implemented in this work. The parameters which would affect the time resolution are analyzed according to simulation and experimental test. After the optimization of electronics, a time resolution of 165 ps at the equivalent deposition energy of 1 GeV is achieved, which indicates that the waveform fitting method based on charge-sensitive readout electronics can meet the future requirements.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A pile-up correction algorithm for STCF ECAL readout electronics;International Journal of Modern Physics A;2024-09-04

2. A light yield enhancement method using wavelength shifter for the STCF EMC;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3