Results of the first implementation of RF phase signature matching at LANSCE

Author:

Huang E.-C.,Taylor C.E.,Roy P.K.,Upadhyay J.

Abstract

Abstract The LINAC at the Los Alamos Neutron Science Center (LANSCE) has been utilizing the Delta-t method to match the RF cavities to the design acceleration parameters since its commissioning in 1972. The differences in time-of-flight between two subsequent Beam Position and Phase Monitors (BPPMs) are measured with both accelerated and drifting beams, depending on the whether the module is set to on or off. The algorithm optimizes the module amplitude and phase via iterative measurements if the initial phase is in the vicinity of the design value. With an upgrade to a faster readout system, a scan over the whole RF cavity phase range requires relatively less time than the classical optimization procedure. The Phase Scan Signature Matching (PSSM) method provides a time-efficient method that ensures the phase selection lands on the bunching side and empowers future analyses to build module-specific models. The PSSM also utilizes a direct model to determine the correct amplitude to sub-percent level instead of using linearized matrices. Furthermore, lacking a reliable energy measurement method in the LINAC, we measure the beam phases at two downstream locations to increase the precision of energy measurements. In this letter, we also discuss the sensitivities of PSSM, error propagation, and the implementation results for the 2019 and 2020 beam cycles.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3