Enhanced tunable cavity development for axion dark matter searches using a piezoelectric motor in combination with gears

Author:

Yi A.K.,Seong T.,Lee S.,Ahn S.,Ivanov B.I.,Uchaikin S.V.,Ko B.R.ORCID,Semertzidis Y.K.

Abstract

Abstract Most search experiments sensitive to quantum chromodynamics (QCD) axion dark matter benefit from microwave cavities, as electromagnetic resonators, that enhance the detectable axion signal power and thus the experimental sensitivity drastically. As the possible axion mass spans multiple orders of magnitude, microwave cavities must be tunable and it is desirable for the cavity to have a tunable frequency range that is as wide as possible. Since the tunable frequency range generally increases as the dimension of the conductor tuning rod increases for a given cylindrical conductor cavity system, we developed a cavity system with a large dimensional tuning rod in order to increase this. We, for the first time, employed not only a piezoelectric motor, but also gears to drive a large and accordingly heavy tuning rod, where such a combination to increase driving power can be adopted for extreme environments as is the case for axion dark matter experiments: cryogenic, high-magnetic-field, and high vacuum. Thanks to such higher power derived from the piezoelectric motor and gear combination, we realized a wideband tunable cavity whose frequency range is about 42% of the central resonant frequency of the cavity, without sacrificing the experimental sensitivity too much.

Publisher

IOP Publishing

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3