Accelerator beam phase space tomography using machine learning to account for variations in beamline components

Author:

Wolski A.ORCID,Botelho D.,Dunning D.ORCID,Pollard A.E.ORCID

Abstract

Abstract We describe a technique for reconstruction of the four-dimensional transverse phase space of a beam in an accelerator beamline, taking into account the presence of unknown errors on the strengths of magnets used in the data collection. Use of machine learning allows rapid reconstruction of the phase-space distribution while at the same time providing estimates of the magnet errors. The technique is demonstrated using experimental data from CLARA, an accelerator test facility at Daresbury Laboratory.

Publisher

IOP Publishing

Reference45 articles.

1. X-ray free-electron lasers—principles, properties and applications;Pellegrini;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2003

2. X-ray free-electron lasers;McNeil;Nature Photonics,2010

3. Free electron lasers: Present status and future challenges;Barletta;Nucl. Instrum. Meth. A,2010

4. Short-wavelength free-electron laser sources and science: a review;Seddon;Reports on Progress in Physics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3