The qualification of GEM detector and its application to imaging

Author:

Ahmed A.,Kumar A.,Naimuddin Md.,Babij M.,Bielowka P.

Abstract

Abstract The Gas Electron Multiplier (GEM) is a new age detector, which can handle the high flux of particles. The GEM foil, which is constructed using 50 μm highly insulating foil (Kapton/Apical) coated with 5 μm layers of copper, on both sides, with a network of specifically shaped holes is the major component of these detectors. The European Center for Nuclear Research (CERN) has been the sole supplier of the GEM foils until recently when a few other companies started manufacturing GEM foils under the transfer of technology (TOT) agrement from CERN. Techtra is one such company in Europe which gained a right to use CERN developed technology in order to produce commercially viable GEM foils. Micropack Pvt. Ltd. is another company in India which has successfully manufactured good quality GEM foils. Due to the microscopic structure of holes and dependence on the electric field inside, it becomes essential to study the defect and uniformity of holes along with the electrical property of foils under ambient conditions. In this work we are reporting the tests condition of Techtra GEM foils. We report on the development of a cost effective and efficient technique to study the GEM foils holes geometry, distribution, and defects. We also report on the electrical properties of these foils like leakage current, stability, and discharges. At the detector level, we describe the high voltage (HV) response, gain, uniformity, and stability. The GEMs have been proposed to have a wider applications, so we performed a feasibility study to utilize these for the imaging. We irrediated various objects of varying density with X-rays and reconstructed the images. The reconstructed image shows a good distinction between materials of different densities, which can be very useful in various applications like medical imaging or cargo imaging.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference38 articles.

1. GEM: A new concept for electron amplification in gas detectors;Sauli;Nucl. Instrum. Meth. A,1997

2. Progress on large area GEMs;Duarte Pinto;JINST,2009

3. The STAR forward GEM tracker;Surrow;Nucl. Instrum. Meth. A,2010

4. High-rate particle triggering with triple-GEM detector;Alfonsi;Nucl. Instrum. Meth. A,2004

5. A triple-GEM telescope for the TOTEM experiment;Lami;Nucl. Phys. B Proc. Suppl.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel technique for measuring position resolution of Gas Electron Multipliers (GEM);Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-01

2. Development of a Novel Fabrication Process for Application in Glass Gas Electron Multiplier Detectors;Processes;2023-04-14

3. Manufacturing of a 70 × 70 mm2 LTCC strip electrode readout for Gas Electron Multiplier detectors;Sensors and Actuators A: Physical;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3