Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC

Author:

Bortolato G.ORCID,Cepeda M.,Heikkilä J.,Huber B.,Leutgeb E.,Rabady D.,Sakulin H.,

Abstract

Abstract The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed information from sub-detectors at the bunch crossing rate: the upgraded Global Trigger will use high-precision trigger objects to provide the Level-1 decision. Besides cut-based algorithms, novel machine-learning-based algorithms will also be included in the Global Trigger to achieve a higher selection efficiency and detect unexpected signals. Implementation of these novel algorithms is presented, focusing on how the neural network models can be optimized to ensure a feasible hardware implementation. The performance and resource usage of the optimized neural network models are discussed in detail.

Publisher

IOP Publishing

Reference13 articles.

1. Development of the CMS detector for the CERN LHC Run 3;CMS Collaboration,2023

2. Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors;Coelho;Nature Mach. Intell.,2021

3. Fast inference of deep neural networks in FPGAs for particle physics;Duarte;JINST,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundations of automatic feature extraction at LHC–point clouds and graphs;The European Physical Journal Special Topics;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3