Borane (B m H n ), Hydrogen rich, Proton Boron fusion fuel materials for high yield laser-driven Alpha sources

Author:

Turcu I.C.E.,Margarone D.,Giuffrida L.,Picciotto A.,Spindloe C.,Robinson A.P.L.,Batani D.

Abstract

Abstract We propose for the first time, a new fuel-material for laser-driven Proton Boron (P-B) fusion nuclear reactions. We propose, Hydrogen rich, Borane (B m H n ) materials as fusion fuel as compared to Boron Nitride (BN) presently used. We estimate more than 10-fold increase in the yield of nuclear fusion reactions, and Alpha-prticle flux, when, for example Ammonia Borane (BNH6) laser-target material will be used compared to the state of the art normalized flux ∼108 Alphas/sr/J from BN targets. BNH6 contains ∼1000× higher concentration of Hydrogen compared to BN. We report the manufacture of the first solid-pellets Ammonia Borane laser-targets. To obtain high Flux Alpha sources from repetitive lasers we propose new BNH6 target geometries: liquid (molten) droplets/jets; or translated tape- or disc-targets coated with BNH6 powder. Targets would be irradiated in low pressure, ambient buffer gas. To enhance the fusion/Alpha yield of ultra-high intensity PetaWatt laser-target interaction we propose nano- and micro-structured Borane targets. As applications, we propose to use the Alpha-driven nuclear reactions inside the laser-driven Borane targets for new schemes to produce short-lived medical radioisotopes. Such laser-driven radioisotope beamlines would be installed directly in hospitals. Borane materials, like Diborane (6), B2H6, are also proposed as nuclear-fuels for laser-driven Proton-Boron fusion energy generation. The high dilution of Boron in Hydrgen B/H = 33% would need to be further enahnced to B/H < 15% to cut radiation losses from the hot and dense fusion pellet.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3