Object condensation for track building in a backward electron tagger at the EIC

Author:

Gardner S.ORCID,Tyson R.ORCID,Glazier D.ORCID,Livingston K.ORCID

Abstract

Abstract At the Electron Ion Collider, quasi-real photoproduction measurements involve tracking scattered electrons at small angles relative to the beamline. These electrons act as effective beams of tagged almost-real photons, with a high flux compared to larger Q2 interactions. However, the proximity of the detector to the electron beam results in a very high flux of electrons from the bremsstrahlung process (about 10 electrons per 12 ns electron/ion bunch crossing over an area of approximately 100 cm2). Consequently, the tracking detector systems experience high occupancy. To address this, we propose using machine learning algorithms, specifically object condensation methods, which excel at track building in the quasi-real photon tagger. These algorithms achieve track finding efficiency of 95% or higher and purity of 90% or higher, even in the presence of noise and hit detection inefficiencies.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3