Design, fabrication and validation of an electrical conductivity principle based two-phase detection sensor array for molten lead (Pb) based heavy metal coolants up to 600°C

Author:

Saraswat A.ORCID,Bhattacharyay R.,Gedupudi S.,Chaudhuri P.

Abstract

Abstract Molten lead (Pb) and its alloys (PbBi and PbLi) are of immense interest for various nuclear engineering applications, including but not limited to advanced Lead-cooled Fast Reactors (LFRs), tritium Breeding Blankets (BBs) of fusion power plants and spallation targets for Accelerator-Driven Systems (ADS). Owing to their attractive thermophysical properties, these advanced fluids assert their candidacy to address the critical requirements of neutron multiplication, neutron moderation, high temperature coolants and tritium breeders, enabling the operation of next generation nuclear systems at high temperatures with better efficiencies. However, for numerous reasons such as a compromise of structural integrity at the heat transfer interface, presence of an inert cover gas during charging of molten metal in the loop, and the fusion fuel cycle itself may lead to molten metal-gas two-phase flows with high density ratios. At present, no effective diagnostics exist to detect such operational and accidental occurrences in high temperature molten metal systems resulting in a severe lack of relevant experimental studies. To address these limitations and to advance the current understanding toward two-phase regimes in high temperature Pb-based melts, the present work focuses on the design and assembly aspects of an electrical conductivity-based two-phase detection sensor array, utilizing high purity  α-Al2O3 coatings with AlPO4 binder as electrical insulation layers. This paper discusses the design considerations, thermal analysis, systematic selection of structural/functional components along with preliminary results from the probe performance tests in very high temperature (600°C) static molten Pb column for real time detection of argon gas bubbles rising within the melt. Quantitative estimations of time-averaged void fraction, average bubble impaction frequency and average bubble residence time are presented from the preliminary experimental investigations.

Publisher

IOP Publishing

Reference28 articles.

1. Lead, bismuth, tin and their alloys as nuclear coolants;Weeks;Nuclear Engineering and Design,1971

2. The DEMO Water-Cooled Lead-Lithium Breeding Blanket: Design Status at the End of the Pre-Conceptual Design Phase;Arena;Applied Sciences,2021

3. Experimental Study of Flow Structure and Turbulent Characteristics in Lead–Bismuth Two-Phase Flow;Ariyoshi,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3