Neural Networks for position reconstruction in liquid argon detectors

Author:

Cárdenas-Montes MiguelORCID,Santorelli Roberto

Abstract

Abstract This article explores the integration of Deep Learning and Explainable Artificial Intelligence in Particle Physics, focusing on their application in position reconstruction within dual-phase liquid argon detectors for Dark Matter search. Facing challenges like pile-up scenarios, Neural Networks prove crucial for refining algorithms. This article emphasizes Deep Learning's role in addressing regression and classification problems, such as position reconstruction and particle identification, particularly in Time Projection Chambers. Explainable Artificial Intelligence emerges as pivotal in unraveling Deep Learning's complex decisions, exposing biases, and facilitating improvement cycles. Innovations like Evolutionary Neural Networks and topology-driven dataset reduction offer potential efficiency gains. The conclusion highlights challenges in analyzing massive data volumes, emphasizing the need for adaptability and ethical considerations in the pursuit of understanding Dark Matter.

Publisher

IOP Publishing

Reference18 articles.

1. WIMP dark matter candidates and searches — current status and future prospects;Roszkowski;Rept. Prog. Phys.,2018

2. Design and Construction of the DEAP-3600 Dark Matter Detector;DEAP-3600 Collaboration;Astropart. Phys.,2019

3. The DEAP-3600 Experiment;DEAP-3600 Collaboration;PoS,2021

4. Direct Detection of Dark Matter with DarkSide-20k;DarkSide Collaboration;EPJ Web Conf.,2023

5. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS;DarkSide-20k Collaboration;Eur. Phys. J. Plus,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3