Performance investigation on the balance of static and dynamic magnetic field strength of magnetostrictive patch transducer with different permanent magnets

Author:

Hou E.Z.Y.,Li G.G.D.,Huang G.

Abstract

Abstract Nowadays, a magnetostrictive patch transducer(MPT) utilizing the high magnetostriction patch such as iron-cobalt alloy attached to the tested specimen like pipes, tubes, and cables has attracted more attention from many scholars. A harmonized flexible printed coil magnetostrictive patch transducer (HFPC-MPT) was proposed in 2019 by the author's research group, and this high-performance MPT could generate a more even magnetostrictive force than before. However, that research was an MPT optimization from sensor circuit design perspective. From the perspective of the magnetic field, this type of sensor has not been explored yet to improve its performance. In this research, firstly, the author conducted numerical simulations to find the optimal balance range between the static and dynamic magnetic fields of HFPC-MPT. Secondly, some experiments have been designed to verify the simulation results. The simulation results have been validated and are in agreement with the experimental results. This research provided a deep insight into improving the performance of HFPC-MPT from the perspective of the static magnetic field, which is also beneficial to both industrial and academic areas.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3