Optimizing dynamic aperture studies with active learning

Author:

Di Croce D.ORCID,Giovannozzi M.,Krymova E.,Pieloni T.,Redaelli S.,Seidel M.,Tomás R.,Van der Veken F.F.

Abstract

Abstract Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the features of dynamic aperture is crucial for the design and operation of such accelerators, as it provides insights into nonlinear effects and the possibility of optimising beam lifetime. The standard approach to calculate the dynamic aperture requires numerical simulations of several initial conditions densely distributed in phase space for a sufficient number of turns to probe the time scale corresponding to machine operations. This process is very computationally intensive and practically outside the range of today's computers. In our study, we introduced a novel method to estimate dynamic aperture rapidly and accurately by utilising a Deep Neural Network model. This model was trained with simulated tracking data from the CERN Large Hadron Collider and takes into account variations in accelerator parameters such as betatron tune, chromaticity, and the strength of the Landau octupoles. To enhance its performance, we integrate the model into an innovative Active Learning framework. This framework not only enables retraining and updating of the computed model, but also facilitates efficient data generation through smart sampling. Since chaotic motion cannot be predicted, traditional tracking simulations are incorporated into the Active Learning framework to deal with the chaotic nature of some initial conditions. The results demonstrate that the use of the Active Learning framework allows faster scanning of the configuration parameters without compromising the accuracy of the dynamic aperture estimates.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3