Numerical study of the plasma meniscus shape and beam optics in RF negative ion sources

Author:

Hayashi K.,Hoshino K.,Miyamoto K.,Hatayama A.,Lettry J.

Abstract

Abstract In order to extract intense ion beams with good beam optics from hydrogen negative ion sources, it is important to control the shape of the plasma meniscus (i.e. beam emission surface). Recently, it is suggested experimentally that the degradation of beam optics in the RF negative ion sources may be due to the fluctuation of the distance d eff between the meniscus and the extraction grid caused by the fluctuation of the plasma density np . The purpose of this study is to make clear the dependence of d eff on np in the presence of a large amount of surface produced H- ions in order to understand such fluctuation of beam optics in RF sources For the purpose, 3D electrostatic PIC simulation was conducted taking the bulk plasma density as a parameter, investigating the extraction region of a H- ion source. A large amount of the surface H- production on the PG has been taken into account under the assumption that the H- production rate is proportional to the bulk plasma density. The result shows that the effective distance d eff is proportional to np -1/2 even for a large amount of surface H- production. This dependence suggests that the bulk plasma density  np is the key parameters to control d eff and the resultant beam optics extracted from the negative ion source.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3