Study of residual artificial neural network for particle identification in the CEPC high-granularity calorimeter prototype

Author:

Song S.ORCID,Chen J.,Liu J.,Liu Y.ORCID,Qi B.,Shi Y.,Wang J.,Wang Z.ORCID,Yang H.

Abstract

Abstract Particle Identification (PID) plays a central role in associating the energy depositions in calorimeter cells with the type of primary particle in a particle flow oriented detector system. In this paper, we propose novel PID methods based on the Residual Network (ResNet) architecture which enable the training of very deep networks, bypass the need to reconstruct feature variables, and ensure the generalization ability among various geometries of detectors, to classify electromagnetic showers and hadronic showers. Using Geant4 simulation samples with energy ranging from 5 GeV to 120 GeV, the efficacy of Residual Connections is validated and the performance of our model is compared with Boosted Decision Trees (BDT) and other pioneering Artificial Neural Network (ANN) approaches. In shower classification, we observe an improvement in background rejection over a wide range of high signal efficiency (> 95%). These findings highlight the prospects of ANN with Residual Blocks for imaging detectors in the PID task of particle physics experiments.

Publisher

IOP Publishing

Reference49 articles.

1. CEPC Conceptual Design Report: Volume 2 - Physics Detector;CEPC Study Group Collaboration,2018

2. TMVA - Toolkit for Multivariate Data Analysis;TMVA Collaboration,2007

3. Particle identification using Boosted Decision Trees in the semi-digital hadronic calorimeter;Liu;JINST,2020

4. Studies of boosted decision trees for MiniBooNE particle identification;Yang;Nucl. Instrum. Meth. A,2005

5. Boosted decision trees, an alternative to artificial neural networks;Roe;Nucl. Instrum. Meth. A,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3