Machine Learning-based reconstruction of single and double radiation source distribution using plastic scintillation optical fiber

Author:

Dai Dongrui,Geng Changran,Tang Xiaobin

Abstract

Abstract In this study, we propose a novel method for reconstructing the radiation distribution of a one-dimensional radioactive source using Machine Learning (ML) algorithms and plastic scintillation optical fiber. The wavelength spectrum unfolding technique is used to estimate the source position accurately. We compare the accuracy and time efficiency of three different algorithms, namely, Generalized reduced gradient (GRG), Maximum likelihood expectation maximization (MLEM), and ML, in the single-source and dual-source cases. Our results demonstrate that MLEM algorithm has a shorter reconstruction time with comparable accuracy of position and intensity compared to GRG algorithm for single-source case. For dual-source case, ML algorithm provides real-time estimation of position and intensity with acceptable errors, while GRG algorithm has a larger error in intensity estimation and longer computation time. Our proposed ML algorithms offer useful guidance for practical applications in radiation source location.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3