Different elements, same results: time-resolved temperature determination by oxygen and nitrogen elements

Author:

Arjmand S.,Anania M.P.,Biagioni A.,Ferrario M.,Galletti M.,Lollo V.,Pellegrini D.,Pompili R.,Zigler A.

Abstract

Abstract The core purpose of this research is to use optical emission spectroscopy to determine the electron temperature (Te ) of a hydrogen plasma generated in a capillary discharge plasma, with a focus on its temporal variation. The plasma density (ne ) is first determined using the Stark broadening technique, which measures the broadening of spectral lines as a result of the electric field in the plasma. Subsequently, a passive spectroscopic technique is employed to estimate the electron plasma temperature by detecting the emitted light from the plasma. This spectral detection is performed using a visible range spectrometer. In this study, two elements, oxygen and nitrogen, are specifically selected based on the chemical composition of the capillary. The electron plasma temperature is estimated using the line ratio method, which involves comparing the intensities of two specific spectral lines emitted by the selected elements. By analyzing these line ratios, the electron plasma temperature can be inferred. The combination of the Stark broadening technique and line ratio method provides valuable insights into the plasma's physical characteristics, specifically its density and temperature.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3