Compact microstrip diplexer design using new octagonal resonators for 5G and Wi-Fi applications

Author:

Ben Haddi S.,Zugari A.,Zakriti A.,El Ouahabi M.,El Khamlichi D.

Abstract

Abstract The present paper sheds light on designing a new and high performance microstrip diplexer. The latter is based on new octagonal meandrous resonators combined with the connected common port, without adding any transmission line junction, in order to get a miniaturized structure. The suggested compact resonator is formed through combining the octagonal meandrous lines and coupled lines, which create a bandpass filter. These filters operate at 3.5 GHz and 5 GHz which make them suitable for 5G and Wi-Fi applications. Accordingly, an approximated equivalent LC model of the presented octagonal meandrous resonator is suggested and analyzed so as to validate the simulation results. On top of that, the suggested diplexer is compact, as it occupies only 0.0768 λ g × 0.024 λ g. Thus, it attained excellent performance in terms of S-Parameters as the transmission coefficients are about -1 dB and the reflection coefficient is about -20 dB at both channels, whereas the isolation is about -25 dB. Hence, the validation of theoretical and simulated results is carried out through measurements of the manufactured prototype.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3