Graph Neural Networks for low-energy event classification & reconstruction in IceCube

Author:

Abbasi R.,Ackermann M.,Adams J.,Aggarwal N.,Aguilar J.A.,Ahlers M.,Ahrens M.,Alameddine J.M.,Alves A.A.,Amin N.M.,Andeen K.,Anderson T.,Anton G.,Argüelles C.,Ashida Y.,Athanasiadou S.,Axani S.,Bai X.,Balagopal V. A.,Baricevic M.,Barwick S.W.,Basu V.,Bay R.,Beatty J.J.,Becker K.-H.,Becker Tjus J.,Beise J.,Bellenghi C.,Benda S.,BenZvi S.,Berley D.,Bernardini E.,Besson D.Z.,Binder G.,Bindig D.,Blaufuss E.,Blot S.,Bontempo F.,Book J.Y.,Borowka J.,Boscolo Meneguolo C.,Böser S.,Botner O.,Böttcher J.,Bourbeau E.,Braun J.,Brinson B.,Brostean-Kaiser J.,Burley R.T.,Busse R.S.,Campana M.A.,Carnie-Bronca E.G.,Chen C.,Chen Z.,Chirkin D.,Choi K.,Clark B.A.,Classen L.,Coleman A.,Collin G.H.,Connolly A.,Conrad J.M.,Coppin P.,Correa P.,Countryman S.,Cowen D.F.,Cross R.,Dappen C.,Dave P.,De Clercq C.,DeLaunay J.J.,Delgado López D.,Dembinski H.,Deoskar K.,Desai A.,Desiati P.,de Vries K.D.,de Wasseige G.,DeYoung T.,Diaz A.,Díaz-Vélez J.C.,Dittmer M.,Dujmovic H.,DuVernois M.A.,Ehrhardt T.,Eller P.,Engel R.,Erpenbeck H.,Evans J.,Evenson P.A.,Fan K.L.,Fazely A.R.,Fedynitch A.,Feigl N.,Fiedlschuster S.,Fienberg A.T.,Finley C.,Fischer L.,Fox D.,Franckowiak A.,Friedman E.,Fritz A.,Fürst P.,Gaisser T.K.,Gallagher J.,Ganster E.,Garcia A.,Garrappa S.,Gerhardt L.,Ghadimi A.,Glaser C.,Glauch T.,Glüsenkamp T.,Goehlke N.,Gonzalez J.G.,Goswami S.,Grant D.,Gray S.J.,Grégoire T.,Griswold S.,Günther C.,Gutjahr P.,Haack C.,Hallgren A.,Halliday R.,Halve L.,Halzen F.,Hamdaoui H.,Ha Minh M.,Hanson K.,Hardin J.,Harnisch A.A.,Hatch P.,Haungs A.,Helbing K.,Hellrung J.,Henningsen F.,Heuermann L.,Hickford S.,Hill C.,Hill G.C.,Hoffman K.D.,Hoshina K.,Hou W.,Huber T.,Hultqvist K.,Hünnefeld M.,Hussain R.,Hymon K.,In S.,Iovine N.,Ishihara A.,Jansson M.,Japaridze G.S.,Jeong M.,Jin M.,Jones B.J.P.,Kang D.,Kang W.,Kang X.,Kappes A.,Kappesser D.,Kardum L.,Karg T.,Karl M.,Karle A.,Katz U.,Kauer M.,Kelley J.L.,Kheirandish A.,Kin K.,Kiryluk J.,Klein S.R.,Kochocki A.,Koirala R.,Kolanoski H.,Kontrimas T.,Köpke L.,Kopper C.,Koskinen D.J.,Koundal P.,Kovacevich M.,Kowalski M.,Kozynets T.,Krupczak E.,Kun E.,Kurahashi N.,Lad N.,Lagunas Gualda C.,Larson M.J.,Lauber F.,Lazar J.P.,Lee J.W.,Leonard K.,Leszczyńska A.,Lincetto M.,Liu Q.R.,Liubarska M.,Lohfink E.,Love C.,Lozano Mariscal C.J.,Lu L.,Lucarelli F.,Ludwig A.,Luszczak W.,Lyu Y.,Ma W.Y.,Madsen J.,Mahn K.B.M.,Makino Y.,Mancina S.,Marie Sainte W.,Mariş I.C.,Marka S.,Marka Z.,Marsee M.,Martinez-Soler I.,Maruyama R.,McElroy T.,McNally F.,Mead J.V.,Meagher K.,Mechbal S.,Medina A.,Meier M.,Meighen-Berger S.,Merckx Y.,Micallef J.,Mockler D.,Montaruli T.,Moore R.W.,Morse R.,Moulai M.,Mukherjee T.,Naab R.,Nagai R.,Naumann U.,Nayerhoda A.,Necker J.,Neumann M.,Niederhausen H.,Nisa M.U.,Nowicki S.C.,Obertacke Pollmann A.,Oehler M.,Oeyen B.,Olivas A.,Orsoe R.,Osborn J.,O'Sullivan E.,Pandya H.,Pankova D.V.,Park N.,Parker G.K.,Paudel E.N.,Paul L.,Pérez de los Heros C.,Peters L.,Petersen T.C.,Peterson J.,Philippen S.,Pieper S.,Pizzuto A.,Plum M.,Popovych Y.,Porcelli A.,Prado Rodriguez M.,Pries B.,Procter-Murphy R.,Przybylski G.T.,Raab C.,Rack-Helleis J.,Rameez M.,Rawlins K.,Rechav Z.,Rehman A.,Reichherzer P.,Renzi G.,Resconi E.,Reusch S.,Rhode W.,Richman M.,Riedel B.,Roberts E.J.,Robertson S.,Rodan S.,Roellinghoff G.,Rongen M.,Rott C.,Ruhe T.,Ruohan L.,Ryckbosch D.,Rysewyk Cantu D.,Safa I.,Saffer J.,Salazar-Gallegos D.,Sampathkumar P.,Sanchez Herrera S.E.,Sandrock A.,Santander M.,Sarkar S.,Sarkar S.,Schaufel M.,Schieler H.,Schindler S.,Schlueter B.,Schmidt T.,Schneider J.,Schröder F.G.,Schumacher L.,Schwefer G.,Sclafani S.,Seckel D.,Seunarine S.,Sharma A.,Shefali S.,Shimizu N.,Silva M.,Skrzypek B.,Smithers B.,Snihur R.,Soedingrekso J.,Søgaard A.,Soldin D.,Spannfellner C.,Spiczak G.M.,Spiering C.,Stamatikos M.,Stanev T.,Stein R.,Stezelberger T.,Stürwald T.,Stuttard T.,Sullivan G.W.,Taboada I.,Ter-Antonyan S.,Thompson W.G.,Thwaites J.,Tilav S.,Tollefson K.,Tönnis C.,Toscano S.,Tosi D.,Trettin A.,Tung C.F.,Turcotte R.,Twagirayezu J.P.,Ty B.,Unland Elorrieta M.A.,Upshaw K.,Valtonen-Mattila N.,Vandenbroucke J.,van Eijndhoven N.,Vannerom D.,van Santen J.,Vara J.,Veitch-Michaelis J.,Verpoest S.,Veske D.,Walck C.,Wang W.,Watson T.B.,Weaver C.,Weigel P.,Weindl A.,Weldert J.,Wendt C.,Werthebach J.,Weyrauch M.,Whitehorn N.,Wiebusch C.H.,Willey N.,Williams D.R.,Wolf M.,Wrede G.,Wulff J.,Xu X.W.,Yanez J.P.,Yildizci E.,Yoshida S.,Yu S.,Yuan T.,Zhang Z.,Zhelnin P.

Abstract

Abstract IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference39 articles.

1. The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping;Abbasi;Nucl. Instrum. Meth. A,2009

2. Neutrino Physics with the IceCube Detector;Kiryluk,2009

3. The Design and Performance of IceCube DeepCore;Abbasi;Astropart. Phys.,2012

4. IceCube: An Instrument for Neutrino Astronomy;Halzen;Rev. Sci. Instrum.,2010

5. Low energy event reconstruction in IceCube DeepCore;Abbasi;Eur. Phys. J. C,2022

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3