Monte Carlo simulation method of polarization effects in Laser Compton Scattering on relativistic electrons

Author:

Filipescu Dan

Abstract

Abstract Quasi-monochromatic, high energy and highly polarized γ-ray beam sources based on Compton scattering of laser photons (LCS) on relativistic electrons have developed for the last few decades as established instruments for nuclear physics studies. Following an extensive photoneutron experimental campaign at the LCS γ-ray beam line of the NewSUBARU synchrotron radiation facility at SPring8, Japan, a dedicated simulation code was developed for characterizing the incident γ-ray beams. The eliLaBr code is implemented using Geant4 and is available on the GitHub repository (github.com/dan-mihai-filipescu/eliLaBr). The present work describes step-by-step the Monte Carlo algorithm with focus on modeling the polarization properties of the scattered photon. The polarization is treated independently both in the Stokes parameters and in the polarization vector formalisms. An intervalidation between the two methods is given. Based on polarization state description requirements of different Geant4 physics classes, user recommendations are given on which of the two methods to be employed. The spatial and energy distributions for the LCS γ-ray beam and its Stokes parameters are obtained for head-on laser — relativistic electron collisions, where several incident laser polarization states were considered: linear, unpolarized, circular and mixed linear and circular polarization. Results of previous investigations on the polarization of Compton scattered photons are reproduced. The influence of variable incident angle between photon and electron beam was also investigated. We show that the degree of polarization transfer from the incident photon to the scattered photon increases with the collision angle, where head-on is considered 0°. However, as the polarization transfer is strongly influenced by the incident photon energy, we show that, for γ-ray sources based on Compton scattering of laser photons on relativistic electrons, the polarization degree of the incident photon is almost completely transferred to the scattered photon for any incident angle.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3