Author:
Domier C.W.,Dannenberg J.,Zhu Y.,Liu X.,Sirigiri J.R.,Ren Y.,Stratton B.,Luhmann N.C.
Abstract
Abstract
A previous 5-channel tangential high-k scattering system is being replaced by an 8-channel, poloidal high-k scattering system on the National Spherical Torus eXperiment Upgrade (NSTX-U) device located in Princeton, NJ, USA. The 693 GHz poloidal scattering system replaces a 280 GHz tangential scattering system to study high-k electron density fluctuations on NSTX-U, thereby considerably enhancing planned turbulence physics studies by providing a measurement of the k
θ
-spectrum of both electron temperature gradient (ETG) and ion temperature gradient (ITG) modes. Two approaches to generating the 693 GHz probe beam are under development: an optically-pumped far-infrared (FIR) laser that generates ∼50 mW, and a compact gyrotron that can potentially generate in excess of 5 W. Large aperture optics collect radiation scattered from density fluctuations in the plasma core at 8 simultaneous scattering angles ranging from 2 to 15° corresponding to poloidal wavenumbers that extend to >40 cm−1. Steerable launch optics coupled with receiver optics mounted on a 5-axis receiver carriage allow the scattering volume to be placed radially from r/a = 0.3 out to the pedestal region (r/a ∼ 0.99) and translated horizontally as needed to satisfy wavenumber matching.
Subject
Mathematical Physics,Instrumentation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献