A deep-learning based raw waveform region-of-interest finder for the liquid argon time projection chamber

Author:

Acciarri R.,Baller B.,Basque V.,Bromberg C.,Cavanna F.,Edmunds D.,Fitzpatrick R.S.,Fleming B.,Green P.,James C.,Lepetic I.,Luo X.,Palamara O.,Scanavini G.,Soderberg M.,Spitz J.,Szelc A.M.,Uboldi L.,Wang M.H.L.S.,Wu W.,Yang T.

Abstract

Abstract The liquid argon time projection chamber (LArTPC) detector technology has an excellent capability to measure properties of low-energy neutrinos produced by the sun and supernovae and to look for exotic physics at very low energies. In order to achieve those physics goals, it is crucial to identify and reconstruct signals in the waveforms recorded on each TPC wire. In this paper, we report on a novel algorithm based on a one-dimensional convolutional neural network (CNN) to look for the region-of-interest (ROI) in raw waveforms. We test this algorithm using data from the ArgoNeuT experiment in conjunction with an improved noise mitigation procedure and a more realistic data-driven noise model for simulated events. This deep-learning ROI finder shows promising performance in extracting small signals and gives an efficiency approximately twice that of the traditional algorithm in the low energy region of ∼0.03–0.1 MeV. This method offers great potential to explore low-energy physics using LArTPCs.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference24 articles.

1. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam;Antonello,2015

2. The Short-Baseline Neutrino Program at Fermilab;Machado;Ann. Rev. Nucl. Part. Sci.,2019

3. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE;Abi;JINST,2020

4. From eV to EeV: Neutrino Cross Sections Across Energy Scales;Formaggio;Rev. Mod. Phys.,2012

5. Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC;Acciarri;JINST,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of machine learning methods in neutrino experiments;Journal of Physical Studies;2024

2. Accelerating Machine Learning Inference with GPUs in ProtoDUNE Data Processing;Computing and Software for Big Science;2023-10-27

3. A Particle Identification in the CONNIE Experiment using Deep Learning Approach;2023 XLIX Latin American Computer Conference (CLEI);2023-10-16

4. Low-energy physics in neutrino LArTPCs;Journal of Physics G: Nuclear and Particle Physics;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3