Author:
Gohl St.,Malich M.,Bergmann B.,Burian P.,Granja C.,Heijne E.,Holik M.,Jacubek J.,Janecek J.,Marek L.,Oancea C.,Petro M.,Pospisil S.,Smetana A.,Soukup P.,Turecek D.,Vuolo M.
Abstract
Abstract
A Miniaturized Radiation Monitor (MIRAM) has been developed for the continuous measurement of the radiation field composition and ionizing dose rates in near earth orbits. Compared to currently used radiation monitors, the presented device has an order of magnitude lower weight while being comparable in power consumption and functionality. MIRAM is capable of on-board real-time self-diagnostic. Furthermore, it supports on-board analysis of the measured data to be able to work autonomously. The dose rate is calculated continuously based on the energy deposition in the Timepix3 detector. For the estimation of the particle species composition of the radiation environment, two methods are applied depending on the current flux. At lower fluxes (<104 particles per cm2 per s), a track-by-track analysis based on temporal coincidence is applied. At higher fluxes, a less power and memory consuming method is utilized. This method is using the averaged deposited energy per pixel to estimate the electron and proton content of the radiation field.
Subject
Mathematical Physics,Instrumentation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献