Characterization of vacuum HV microdischarges at HVPTF through X-ray bremsstrahlung spectroscopy

Author:

Kushoro M.H.,Croci G.,Mario I.,Muraro A.,Rigamonti D.,Cancelli S.,De Lorenzi A.,Fincato M.,Fontana C.,Gobbo R.,Grosso G.,Lotto L.,Mc Cormack O.,Putignano O.,Pino F.,Spada E.,Spagnolo S.,Tardocchi M.,Pilan N.

Abstract

Abstract The development of MITICA, the prototype for a neutral beam injector for ITER, drives the interest in investigating high HV insulation in vacuum. The High Voltage Padova Test Facility (HVPTF) is an experimental device with the aim of studying the fundamental processes leading to discharges, offering a framework to develop new diagnostics, models, and mode of operations for MITICA. For this purpose, HVPTF features a vacuum chamber containing two electrodes which can achieve an HV difference up to 800 kV. X-ray bremsstrahlung radiation produced by free charges accelerated by the HV was proven to be a promising monitoring mechanism in the past; as such, two scintillating crystals, a LYSO and a LaBr3, coupled with fast electronics were used to conduct hard X-ray spectroscopy. This work describes a newly custom-developed software tool to analyze the spectroscopy from scintillators and integrate it with the HVPTF analog data. The tool was employed to study two experimental sessions, reaching promising results in the characterization of microdischarges, especially in terms of time resolution. Detection limits imposed by pile-up and other processes were identified and addressed, finding the best range of operation of the two scintillators. The performed study opens the way for the analysis of data obtained in all 2020 and 2021 experimental campaigns, thus giving the possibility to implement future improvements in HVPTF X-ray spectroscopy.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Analysis and Tomographic Reconstruction via X-Ray Measurements With a GEM Detector at the High-Voltage Padova Test Facility;IEEE Transactions on Plasma Science;2024

2. Development of a data analysis software for the XR-GEM installed at HVPTF and preliminary results;2023 30th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV);2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3