Detection of flat-bottom holes in composite materials using multi-dimensional complementary ensemble empirical mode decomposition algorithm

Author:

Zhang Yan,Li Zhaoming,Wang Jin,Zhang Tengda,Zhang Yuzhong

Abstract

Abstract Due to high-temperature resistance, high strength, and excellent fatigue resistance, composite materials are widely used in automotive manufacturing, aerospace, infrastructure and other fields. Consequently, the demand for defect detection of composite materials is also increasing. As a non-destructive testing technique, the active infrared thermography, which can achieve full-field defect detection, is suitable for defect detection of composite materials. However, this method is susceptible to noises caused by the environment and heating sources. In order to solve the problem of the defect signal being submerged by these noises, a multi-dimensional complementary ensemble empirical mode decomposition (MCEEMD) algorithm is introduced in this paper. This method can decompose the signal into the low-frequency background noise, the high-frequency heating noise, and useful defect signals, and these noises can be easily removed to improve the contrast to noise ratio (CNR) of defect images. Based on this proposed method, a defect detection experiment on the carbon fiber reinforced plastic (CFRP) is performed in this paper, and experimental results show that the method can effectively remove environmental noise and heating noise, and it can detect 11 out of 12 defects on the CFRP sample with an average CNR of 9.107. Compared with the traditional differential absolute contrast method, this method can detect one additional small defect with the aspect ratio of 1.67 and one deep defect with a depth of 2 mm.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3