A novel generation design dipole magnet power supply of booster to storage ring transport line in NSRRC

Author:

Wong Yong-Seng,Liu Kuo-Bin,Liu Chen-Yao,Wang Bao-Sheng,Huang Jhao-Cyuan

Abstract

Abstract The Taiwan Light Source (TLS) is a synchrotron radiation facility located in Taiwan. The booster ring at TLS injects electrons into the storage ring, which then circulates the electrons to produce synchrotron radiation for various experiments. The Taiwan Light Source (TLS) has been in service for more than 20 years, and some of the power supplies used in the facility are old and hard to maintain repair and the component are phase-out. The upgrade is specifically aimed at replacing the power supply for the BTS (Booster to Storage ring) transmission line with a new machine. During the regular shunt down time, dipole magnet power supply replacements were completed. The main reason for using the Chroma 62075H-30E power supply is commonality, for this machine is widely used in Taiwan Photon Source (TPS), and the output current of the power supply is paralleled to a dipole magnet. Therefore, a total of 17 power supplies are used in this upgrade planned to be executed. This novel generation upgrade design is important because the power supply for the BTS transmission line is critical for the operation of the facility, as it is responsible for maintaining the electron beam at a stable energy level as it is injected from the booster ring into the storage ring. A more reliable and efficient power supply can help improve the stability and quality of the electron beam, leading to better experimental results and more efficient use of the facility. Overall, this novel generation upgrade design is part of the ongoing effort to modernize and improve the infrastructure of the TLS, ensuring that it remains a state-of-the-art research facility for years to come.

Publisher

IOP Publishing

Reference14 articles.

1. The booster to storage ring transport line for SRRC;Wang

2. The 3 GeV synchrotron injector for SPEAR;Weidemann

3. Beam position monitoring system for the 1.5 GeV transport line of NSRRC;Hu

4. The APS transfer line from linac to injector synchrotron;Koul

5. The Upgrade of the CERN Proton Synchrotron Booster Transfer Line Magnets;Newborough;IEEE Transactions on Applied Superconductivity,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3