Silicon strip defects and their impact on electrical performance of readout electronics

Author:

Affolder A.,Fadeyev V.,Galloway Z.,Gignac M.,Gunnell J.,Johnson J.,Kang N.,Kaplon J.,Martinez-Mckinney F.

Abstract

Abstract In preparation for the High Luminosity LHC (HL-LHC) runs, the ATLAS inner detector will be completely replaced with an all silicon Inner Tracker (ITk). Hybrid silicon pixel modules will be used for the innermost tracking layers, and silicon micro-strip detectors will be used the outer layers of the tracker. During the production of the detector, the sensors, readout electronics, and other components will undergo a series of quality control (QC) and quality assurance tests. Defects in the fabrication of the sensors will be flagged early in the manufacturer's and ATLAS QC tests. A study of the influence of sensor defects was performed to assess the characteristics of these defects in completed modules, and whether any defect posed a risk to the operation of the front-end readout electronics. All defects were found to have no impact on the performance of the front-end readout electronics for healthy amplifier channels, and defects that short the coupling between the strip implant and the metal readout electrode were only noticeable for strip leakage currents in excess of 250 nA, beyond the end-of-life currents expected for most sensors at the HL-LHC.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3