LINAC developments for heavy ion operation at GSI and FAIR

Author:

Barth W.,Hollinger R.,Adonin A.,Miski-Oglu M.,Scheeler U.,Vormann H.

Abstract

The first cavity of a standalone superconducting (sc) continuous wave (cw) heavy ion Linac as a demonstration of the capability of 217 MHz multi gap Crossbar H-mode structures (CH) has been already commissioned at high acceleration gain. The worldwide first beam test with a superconducting multi gap CH-cavity was a milestone of the R&D work of HIM and GSI in collaboration with Goethe University Frankfurt (GUF) in preparation of the sc cw heavy ion Linac project, substituting GSI-UNILAC as a heavy ion high duty factor Linac. Recently the first two of four fully equipped cw-Linac cryomodules are in procurement. To meet the future FAIR science requirements higher beam intensity has to be achieved in the present GSI-accelerator complex. In the last years ion source developments, in particular for the high current Vacuum Arc Ion Sources (VARIS), were concentrated on heavy elements, as Bi and Pb, aiming for stable routine ion source operation at a sufficient rep. rate and high production efficiency. Stripping is a key technology for all heavy ion accelerators. After upgrade of the supersonic N 2 -gas jet implementation of high current foil stripping, recently a new H 2 gas cell, using a pulsed gas regime synchronized with arrival of the beam pulse has been developed. An enhanced stripper gas density as well as a simultaneously reduced gas load results in an increased stripping efficiency, while the beam emittance remains the same. A new record beam intensity (11.1 emA) for 238 U 28+ beams at 1.4 MeV/u has been achieved, applying the pulsed high density H 2 -stripper target to a high intensity 238 U 4+ beam from the VARIS ion source. Further ion source developments have been accomplished recently providing for sufficient heavy ion beam intensities at the High Current Injector Linac. A machine investigation program has been performed in 2020. The focus was to optimize the entire FAIR injector chain for high intensity heavy ion beam after the successful implementation of different upgrade measures. Besides a dedicated operation mode applying UNILAC, as a heavy ion Linac, at a synchronous phase significantly lower than 30 degrees for high intensity proton beam, could be established. Thus, UNILAC is able to deliver a sufficient proton beam intensity for the FAIR commissioning phase, when the FAIR-proton Linac is not yet available.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference24 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3