Ab initio study of the effects of helium on the mechanical properties of different erbium hydrides

Author:

Zhang Mingwen,Li Li,Zhao Zhezhen,Nie Jinlan,Zu Xiaotao,Deng Hongxiang

Abstract

Abstract Although rare-earth metals have increasingly received attention for use in the storage and transportation of the tritium used in nuclear fusion reactions, they still face great challenges, such as the effect of helium on the mechanical properties of different erbium hydrides. In this work, first principles are used to study the mechanical properties (elastic constants, Young’s modulus, transverse shear modulus and bulk modulus) of different erbium hydrides exposed to helium. The Young’s modulus, the transverse shear modulus and the bulk modulus are given based on the elastic constants calculated according to first principles. It is found that the mechanical properties of all three erbium hydrides decrease in the presence of helium, and the decline of the mechanical properties of ErH3 is the most serious. To explain the reason for the decrease in the mechanical properties, the densities of the states of erbium hydrides are calculated. During the calculations, helium embrittlement is not found and the ductility of the erbium hydrides improves following the production of helium at the helium concentrations considered in this work.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3