Unsteady detonation with thermodynamic nonequilibrium effect based on the kinetic theory

Author:

Su Xianli,Lin Chuandong

Abstract

Abstract In this paper, unsteady detonation is simulated and investigated from the viewpoint of kinetic theory. The deviations of the velocity distribution function from the equilibrium state are studied in the evolution of detonation. It has been discovered that the characteristics of the deviation around the detonation wave are significantly different from those in the post-wave region. Besides, the kinetic moments of the reaction term have been simulated, verified and analyzed in detail. In addition, the reaction manifestation is defined to describe the global effects of kinetic moments due to chemical reactions. It is interesting to find that there are three types of periodic oscillations of the reaction manifestation during the evolution of the unsteady detonation. Via the fast Fourier transform, it can be seen that the reaction manifestation is mainly composed of several signal frequencies. Moreover, the impact of rate constants of the two-step reaction scheme on the reaction manifestation is studied, and the influence of chemical heat is investigated as well.

Funder

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference41 articles.

1. Gas explosion handbook;Bjerketvedt;J. Hazard. Mater.,1997

2. Gas detonation and its application in engineering and technologies;Nikolaev;Combust. Explos.,2003

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3