Interplay between magnetic gap and quasi-particle lifetime in topological insulator ferromagnet/f-wave superconductor junctions

Author:

Li Hong,Yang Xinjian

Abstract

Abstract Using the modified Blonder–Tinkham–Klapwijk (BTK) theory, the interplay between the lifetime of quasi particles and the magnetic gap in a topological insulator-based ferromagnet/f-wave superconductor (TI-based FM/f–wave SC) tunnel structure is theoretically studied. Two symmetries of f 1 and f 2 waves are considered for superconducting pairing states. The results indicate that reducing the finite quasi-particle lifetime will induce a transformation of energy-gap peaks into a zero-bias peak in tunneling conductance spectrum, as well as a transformation of energy-gap dips into a zero-bias dip in shot noise spectrum, ultimately resulting in the smoothing of the zero-bias conductance peak and the zero-bias shot noise dip. An increase in magnetic gap will suppress the tunnel conductance and shot noise when the conventional Andreev retro-reflection dominates, but will enhance them when the specular Andreev reflection is dominant. Both specular Andreev reflection and conventional Andreev retro-reflection will be enhanced as the quasi-particle lifetime increases. When Fermi energy equals the magnetic gap, shot noise and tunneling conductance vanish across all energy ranges. These findings not only contribute to a better understanding of specular Andreev reflection in the FM/f–wave SC junction based on TIs but also provide insights for experimentally determining the f-wave pairing symmetry.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3