Improvement on the manipulation of a single nitrogen-vacancy spin and microwave photon at single-quantum level

Author:

Zhou YuanORCID,Lü Dong-Yan,Wang Guang-Hui,Fu Yan-Hua,He Ming-Yao,Ren Hong-Tao

Abstract

Abstract It remains a great challenge to realize direct manipulation of a nitrogen-vacancy (NV) spin at the single-quantum level with a microwave (MW) cavity. As an alternative, a hybrid system with the spin–phonon–photon triple interactions mediated by a squeezed cantilever-type harmonic resonator is proposed. According to the general mechanical parametric amplification of this in-between phonon mode, the direct spin–phonon and photon–phonon couplings are both exponentially enhanced, which can even further improve the coherent manipulation of a single NV spin and MW photon with a higher efficiency. In view of this triple system with enhanced couplings and the additional sideband adjustable designs, this scheme may provide a more efficient phonon-mediated platform to bridge or manipulate the MW quantum and a single electron spin coherently. It is also hoped to evoke wider applications in the areas of quantum state transfer and preparation, ultrasensitive detection and quantum nondestructive measurement, etc.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Hubei University of Automotive Technology

Research Project of Hubei Education Department

Liaocheng University

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3