Abstract
Abstract
It is commonly recognized that, despite current analytical approaches, many physical aspects of nonlinear models remain unknown. It is critical to build more efficient integration methods to design and construct numerous other unknown solutions and physical attributes for the nonlinear models, as well as for the benefit of the largest audience feasible. To achieve this goal, we propose a new extended unified auxiliary equation technique, a brand-new analytical method for solving nonlinear partial differential equations. The proposed method is applied to the nonlinear Schrödinger equation with a higher dimension in the anomalous dispersion. Many interesting solutions have been obtained. Moreover, to shed more light on the features of the obtained solutions, the figures for some obtained solutions are graphed. The propagation characteristics of the generated solutions are shown. The results show that the proper physical quantities and nonlinear wave qualities are connected to the parameter values. It is worth noting that the new method is very effective and efficient, and it may be applied in the realisation of novel solutions.
Subject
Physics and Astronomy (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献