Abstract
Abstract
Disorders and long-range hoppings can induce exotic phenomena in condensed matter and artificial systems. We study the topological and dynamical properties of the quasiperiodic Su–Schrier–Heeger model with long-range hoppings. It is found that the interplay of quasiperiodic disorder and long-range hopping can induce topological Anderson insulator phases with non-zero winding numbers
ω
=
1
,
2
,
and the phase boundaries can be consistently revealed by the divergence of zero-energy mode localization length. We also investigate the nonequilibrium dynamics by ramping the long-range hopping along two different paths. The critical exponents extracted from the dynamical behavior agree with the Kibble–Zurek mechanic prediction for the path with
W
=
0.90
.
In particular, the dynamical exponent of the path crossing the multicritical point is numerical obtained as
1
/
6
∼
0.167
,
which agrees with the unconventional finding in the previously studied XY spin model. Besides, we discuss the anomalous and non-universal scaling of the defect density dynamics of topological edge states in this disordered system under open boundary condictions.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献