Classical density functional approach to depletion interaction of Lennard-Jones binary mixtures

Author:

Chen Yue,Chen Wei,Chen Xiaosong

Abstract

Abstract In this article, we apply classical density functional theory to investigate the characteristics of depletion interaction in Lennard-Jones (LJ) binary fluid mixtures. First of all, in order to confirm the validity of our adopted density functional formalism, we calculate the radial distribution functions with theoretical approach and compare them with results obtained by molecular dynamics simu- lation. Then this approach is applied to the case of two colloids immersed in LJ solvent systems. We investigate the variation of depletion interaction with respect to the distance of two colloids in LJ binary systems. We find that depletion interaction may be attractive or repulsive, mostly depending on the bulk density of solvent and the temperature of binary system. For high bulk densities, the repulsive barrier of depletion force is remarkable when the total excluded volume of colloids touches each other and reaches a maximum. The height of repulsive barrier is related to the parameters of LJ potential and bulk density. Moreover, depletion force may exhibit attractive wells if the bulk density of solvent is low. The attractive well tends to appear when the surface-surface distance of colloids is half of the size of polymer and deepen with temperature lowering in a fixed bulk density. In contrast with the hard-spheres system, no oscillation of depletion potential around zero is observed.

Funder

Fund of State Key Laboratory of Multiphase Complex Systems

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3