Quantifying quantum entanglement via machine learning models

Author:

Feng Changchun,Chen Lin

Abstract

Abstract Quantifying entanglement measures for quantum states with unknown density matrices is a challenging task. Machine learning offers a new perspective to address this problem. By training machine learning models using experimentally measurable data, we can predict the target entanglement measures. In this study, we compare various machine learning models and find that the linear regression and stack models perform better than others. We investigate the model’s impact on quantum states across different dimensions and find that higher-dimensional quantum states yield better results. Additionally, we investigate which measurable data has better predictive power for target entanglement measures. Using correlation analysis and principal component analysis, we demonstrate that quantum moments exhibit a stronger correlation with coherent information among these data features.

Funder

China National Funds for Distinguished Young Scientists

Publisher

IOP Publishing

Reference29 articles.

1. Die gegenwärtige situation in der quantenmechanik;Schrödinger;Naturwissenschaften,1935

2. Quantum entanglement;Horodecki;Rev. Mod. Phys.,2009

3. Experimental one-way quantum computing;Walther;Nature,2005

4. Deterministic quantum teleportation with atoms;Riebe;Nature,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3