Accuracy of numerical relativity waveforms with respect to space-based gravitational wave detectors

Author:

Wang Zun,Zhao Junjie,Cao Zhoujian

Abstract

Abstract As with the laser interferometer gravitational-wave observatory (LIGO), the matched filtering technique will be critical to the data analysis of gravitational wave detection by space-based detectors, including LISA, Taiji and Tianqin. Waveform templates are the basis for such matched filtering techniques. To construct ready-to-use waveform templates, numerical relativity waveforms are a starting point. Therefore, the accuracy issue of numerical relativity waveforms is critically important. There are many investigations regarding this issue with respect to LIGO. But unfortunately there are few results on this issue with respect to space-based detectors. The current paper investigates this problem. Our results indicate that the existing numerical relativity waveforms are as accurate as 99% with respect to space-based detectors, including LISA, Taiji and Tianqin. Such an accuracy level is comparable to that with respect to LIGO.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference51 articles.

1. The new frontier of gravitational waves;Miller;Nature,2019

2. Astrophysics with the Laser Interferometer Space Antenna;Amaro-Seoane;Living Rev. Relativ.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3