Author:
Xu Jia-Zhen,Cao Qi-Hao,Dai Chao-Qing
Abstract
Abstract
The fractional quadric-cubic coupled nonlinear Schrödinger equation is concerned, and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method. The relationship between the Lévy index and the amplitudes of vector symmetric and antisymmetric solitons is investigated. Two components of vector symmetric and antisymmetric solitons show a positive and negative trend with the Lévy index, respectively. The stability intervals of these solitons and the propagation constants corresponding to the maximum and minimum instability growth rates are studied. Results indicate that vector symmetric solitons are more stable and have better interference resistance than vector antisymmetric solitons.
Funder
National Natural Science Foundation of China
the Scientific Research and Developed Fund of Zhejiang A&F University
Zhejiang Provincial Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献