Planar Matrices and Arrays of Feynman Diagrams

Author:

Zhang Yong,Cachazo Freddy,Guevara Alfredo,Umbert Bruno

Abstract

Abstract Very recently planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of k=3 biadjoint amplitudes. Planar collections are one-dimensional arrays of metric trees satisfying an induced planarity and compatibility condition. In this work, we introduce planar matrices of Feynman diagrams as the objects that compute k=4 biadjoint amplitudes. These are symmetric matrices of metric trees satisfying compatibility conditions. We introduce two notions of combinatorial bootstrap techniques for finding collections from Feynman diagrams and matrices from collections. As applications of the first, we find all 693, 13 612, and 346 710 collections for (k,n)=(3,7), (3,8), and (3,9) respectively. As applications of the second kind, we find all 90 608 and 30 659 424 planar matrices that compute (k,n)=(4,8) and (4,9) biadjoint amplitudes respectively. As an example of the evaluation of matrices of Feynman diagrams, we present the complete form of the (4,8) and (4,9) biadjoint amplitudes. We also start the study of higher dimensional arrays of Feynman diagrams, including the combinatorial version of the duality between (k,n) and (n-k,n) objects.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3