Author:
Huang T X,Wu X H,Zhao P W
Abstract
Abstract
This article provides the first application of the machine-learning approach in the study of the cross-sections for neutron-capture reactions with the kernel ridge regression (KRR) approach. It is found that the KRR approach can reduce the root-mean-square (rms) deviation of the relative errors between the experimental data of the Maxwellian-averaged
(
n
,
γ
)
cross-sections and the corresponding theoretical predictions from 69.8% to 35.4%. By including the data with different temperatures in the training set, the rms deviation can be further significantly reduced to 2.0%. Moreover, the extrapolation performance of the KRR approach along different temperatures is found to be effective and reliable.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献