Local proton hopping mechanism in imidazolium-based plastic crystal: an ab initio molecular dynamics study

Author:

Zhang Bohai,Huang Yike,Luo Jiangshui,Li AilinORCID,Yan TianyingORCID

Abstract

Abstract Protic organic ionic plastic crystals (POIPCs) are promising solid-state proton conductor materials in anhydrous proton exchange membrane fuel cells, due to their mechanical flexibility and high ionic conductivity in the plastic crystal phase. In typical POIPCs, the ions are orientationally disordered while the centers of mass are ordered (positional order) like the crystal phase. The local disorder provides more degrees of freedom for the translational and rotational diffusion of ions, thus enhancing proton conduction either via the vehicle mechanism or the Grotthuss mechanism. Yet the local dynamics and the interactions of the cations and anions during the proton transfer process are far from being fully understood. Here, we performed Car–Parrinello molecular dynamics (CPMD) simulation on the imidazolium methanesulfate ([ImH][CH3SO3]) unit cell. By artificially creating one proton hole, we found that a proton can hop directly between the cations. Though the anion is not directly involved in proton hopping, the oxygen atom in the sulfonate group interacts with the proton and has a synergetic motion along with the proton hopping process. This indicates the structural disorder of imidazolium rings and the aid of an anion can facilitate Grotthuss-type proton hopping in imidazolium-based POIPCs.

Funder

the starting grant (“One Hundred Talent Program”) from Sichuan University

National Natural Science Foundation of China

Innovative Teaching Reform Project for Postgraduate Education of Sichuan University

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3