Design of Tunable Devices at Terahertz Frequencies Based on Quasi-Photonic Crystals Incorporated with Graphene

Author:

Ghayoor Reza,Keshavarz Alireza

Abstract

Abstract In this study, we present a new theoretical model including Thue-Morse and double-period sequences as quasi-photonic crystals are incorporation with graphene and investigate the transmission properties of the THz waves in both structures using a straightforward computational method. We also consider properties of nonlinear conductivity in addition to surface linear conductivity for graphene. We observe the sharp peaks and proper forbidden bands are created in the range of 0.3 THz to 30 THz. In addition, we find that by considering the nonlinear term of graphene and engineering the structural parameters such as the chemical potential of graphene, number of layers and the incidence wave angle, transmission levels of peaks enhance scientifically and quality factor improve considerably. These results show that it would be possible to design of high-Q tunable filters with multi-stop bands in the THz regime which can reduce the noise associated with THz frequency peaks and increase the number of sharp frequency peaks.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3