FEM for Blood-Based SWCNTs Flow Through a Circular Cylinder in a Porous Medium with Electromagnetic Radiation*

Author:

R. Eid Mohamed,Al-Hossainy A. F.,Zoromba M. Sh.

Abstract

Abstract This work aims to study magnetohydrodynamic flow through a circular cylinder in a horizontal position of SWCNTs in blood as a base fluid in the existence of non-linear thermal radiation and heat source/sink. Three kinds of nanoparticles shapes are considered. The study is employed the finite element technique to explore and enhance the influences of essential parameters on temperature profiles and is debated the heat transport within blood injects with SWCNTs and exposes to electromagnetic radiation. The treatment with thermal analysis and heat transfer rate being a better substitute more than surgery and chemotherapy for cancer therapy. Utilizing of nanoparticles thermal features is a mounting area of nanomedicine field because of the probable for purposeful demolition of cancer cells. This remedy is relied on many parameters, including nanofluid thermal conductivity, nanoparticles volume fraction, thermal radiation and power and heat source. The numerical solutions for flow and heat transfer features are assessed for diverse governing parameters values. The obtained results are substantiated against the relevant numerical results in the published researches. Results show that both flow velocity and temperature increase for larger values of thermal radiation, heat source and SWCNTs volume fraction with lamina and cylinder shapes. Also, spherical shape of SWCNTs occurs high disturbances in velocity and temperature distribution in the case of cooled cylinder.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3